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Using Synge's definition of mass for material systems, the variation of mass due 
to the radiation of gravitational waves is derived to any order of approximation 
with respect to the parameter associated with the weakness of the gravitational 
field generated. When certain additional boundary conditions are imposed, the 
result is analogous to the quadrupole formula and reduces to it in the first 
approximation. 

1. I N T R O D U C T I O N  

Approximation methods have been basically used for the analysis of 
mass loss due to the radiation of gravitational waves. Thus, using the 
linearized theory of general relativity, Einstein (1918) derived the celebrated 
quadrupole formula (which, therefore, is applicable only to nongravita- 
tionally bounded systems) and after the work of Einstein et al. (1938) the 
method of successive approximations was applied to describe the motion 
of bounded systems until Goldberg (1955) showed that this method was 
inadequate for the study of gravitational radiation. 

In spite of  this, the validity of the quadrupole formula has been 
confirmed in several works, such as those of  Landau and Lifshitz (1951), 
Trautmann (1958), Peres (1950a, b, 1960), Peters (1964), Burke (1969), 
Thorne ( 1969 a, b), and Chandrasekhar  and Esposito ( 1970 ), while the works 
of  Hu (1947), Sheidegger (1953), and Smith and Havas (1965), in which 
the results contradict the validity of  this formula, have been shown to be 
incomplete. 
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Nevertheless, the work of Chandrasekhar and Esposito (1970) has been 
criticized by Ehlers et aL (1976) as the field equations have not been used 
systematically. The method of Chandrasekhar and Esposito has the incon- 
venience of the appearance of divergent integrals just in the order of 
approximation where energy loss has to be taken into account, and although 
this criticism still has not led to a mathematically rigorous derivation of the 
formula, it has led to improved derivations (Walker and Will, 1980; 
Anderson, 1980; Damour, 1983; Cooperstock and Lim, 1985; Futamase and 
Schutz, 1985; Winicour, 1987). 

The inconvenience of divergent integrals has been avoided (up to and 
including the 2�89 post-Newtonian approximation) by using a modification 
of Anderson and Decanio's (1975) method proposed by Ehlers (1978) and 
developed by Kerlich (1980a, b). 

By this method, which is analogous to the "Hilbert type" expansion 
used to obtain the so-called asymptotic series solution of the Boltzmann 
integrodifferential equation, Brueuer and Rudolf (1981) have evaluated the 
energy loss for a radiating system from the radiation damping force, verifying 
the validity of Einstein's classic formula for quasiperiodic motions. 
Papapetrou and Linet (1981) have also obtained the same result in an 
independent way by using the so-called Papapetrou (1951) field equations 
generalizing those of the method of Fock (1939). 

All these methods, besides having the common characteristic of using 
series expansions for the metric in weak fields, use from the beginning the 
slow motion condition. In Synge's method, which is a variant of the "fast 
approximation," series expansions of the metric are abandoned. Further- 
more, by suitable initial conditions the appearance of divergent integrals is 
avoided to any order of approximation (Synge, 1970). 

With the slow motion condition, McCrea (1981) has applied this 
method to evaluate the energy loss by gravitati, onal radiation and has 
obtained this loss from the radiation damping force in the 2�89 post-Newtonian 
approximation. 

The present state of the general problem, and in particular the questions 
concerning the use of series expansions, the appearance of divergent 
integrals, and the slow motion condition can be found in Persides (1987a, b). 

Here, following the line of reasoning in Gambi et al. (1987), by using 
Synge's method without the slow motion condition, and maintaining an 
arbitrary order of approximation, the energy flux through a sphere of radius 
sufficiently large (in a technical sense which will. be prescribed) is derived. 
The result is analogous to the familiar quadrupole formula and reduces to 
it in the first approximation. 

The method is briefly summarized in Section 2. In Section 3 the 
asymptotic expression for the so-called truncated Einstein pseudotensor is 
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evaluated up to the K N+I r - 2  order of  approximation.  The variation of mass 
due to the radiation o f  gravitational waves is derived in Section 4. In Section 
5 the result is compared with the classical one. The asymptotic expression 
for the truncated Einstein pseudotensor is detailed in an Appendix. 

2. D E S C R I P T I O N  OF T H E  M O D E L  AND NOTATION 

W e  c o n s i d e r  a 4-space with coordinates xa and use imaginary time 
x4 = it so that the formal signature of the metric fiab is +4. Latin indices 
take the values 1, 2, 3 and 4, and Greek indices the values 1, 2 and 3, with 
the summation convention in each case. Partial derivatives with respect to 
coordinates are indicated by commas, and units are chosen so that both 
the gravitational constant and the speed of light equal one. 

In Synge's method (Synge, 1970) the space-time metric is considered 
to be of the form 

,gab -= t~ab d- Tab ( 1 )  

so that the truncated Einstein pseudotensor d ab is defined by 

G ab : =  Lab q- ~ a b  ( 2 )  

where Lab is the linear part  of the Einstein tensor, i.e., 

. _  1 
Lab "-- ~( Tab,~c + 7cc, ab -- "Yac, cb -- ~lb . . . .  ) 1 - ~3ab (Ycc, dd -- Ycd, dc) (3) 

SO that it is always true that 

Lab,b = 0 (4) 

I f  the coordinate conditions 

are imposed, with 

we have 

7ab, b -- 0 (5) 

1 
Y~*b :-- 7~b -- ~6~bYc~ (6) 

Lab = ~[] Yah (7) 

Here the symbol [] := ~ 72 At- 044 is the wave operator in the flat space-time. 
The gravitational field equations become 

[] Y*~b = --2KHab (K = 8"n') (8) 

where H ab is the energy-momentum complex defined by 

H ab := T ab + K-1 ~ab (9) 
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T ab is the energy-momentum tensor for the material system generating the 
field. Equations (9) constitute the basis of Synge's approximation. 

The retarded integral operator J is defined by 

,f Jf(x, t):=-~--~ f(x',  t ' ) l l x - x ' l [  -1 d3x' (10) 

(t':-- t -  I[x-x'l l)  

where f is such that both differentiation and integration are valid, so that 

VqJf = J D f  = f  (11) 

x represents a 3-vector in the flat space-time and Ilxll its Euclidean norm. 
N o w ,  considering the sequence of metrics 

l~ ab = (~an "~- ~l a b ( M = 0 , . . . , N )  (12) 

and the sequence of energy complexes 

Hab=Tab+K- 'Gab  ( M = a , . . . , N )  (13) 
M M 

(M means that the quantity it accompanies is calculated with the metric 
tensor ~ab), then, if the energy-momentum tensor is chosen so that the 

equations of motion are satisfied in the Nth approximation, i.e., 

H~,b =0 (14) 

we obtain 

Y N *b = --2KJHabN-1 (15) 

ab satisfies the coordinate conditions 

o~,~ = o (16)  

The weak field approximation is introduced by assuming 

T ab = O(k)  (17) 

where k is a small constant in the sense explained by Synge (1970). Then, 
it can be demonstrated that 

Tab [b = 0  
N--I 
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(where IN-1 means covariant derivative calculated with the metric ~_~) 
implies 

H~_~,b=O(k N+') (18) 

and, furthermore, condition (17) establishes that 

~,,b_ 6,b= o(kM+a) (M = 1 , . . . ,  N) (19) 
M M - - 1  

If the total mass of the material system is defined by 

m := - f H 44 d3x (20) 
Jx 4 = C t "  N - - 1  

equation (18) let us write the variation of total mass in the form 

dm 
= ~ (T 4" + K - ' 6  "4) d E .  + O(k N+') (21) 

dx4 

where the integral on the right-hand side is taken over a sphere of radius 
large enough around the material system, and whose surface element has 
been written as ds If  both the conditions that the material system is of 
completely mechanical origin and that the matter is localized in a bounded 
region of space are imposed, then T ab is of compact support, so that 
choosing the surface of integration far away from the material system, we 
obtain from (21) 

am -1 ~) ~o~4 
dx4= K 3 N-1 ds + O(k N+I) (22) 

for, due to (19), in order to obtain the variation of mass up to O(kN+l), 
^ b G ab or G a can be used indistinguishably. 

N N - - 1  

3. ASYMPTOTIC EXPRESSIONS FOR THE 
TRUNCATED EINSTEIN PSEUDOTENSOR 

3.1. Metric Deviations Far from the Material System 

Let r:= llxil be the radius of a sphere large enough so that Jlx[I >> IIx'll 
Then 

IIx-x'V' = IIxll 1+ O(r -2) (23) 

and the Nth  term of the metric sequence (15) becomes 

I H  "b x' -21rr N_ ( , t ' )d3x'+O(r -2) (24) 
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from which we have 

* 2~rrK I f  0 ~b , 'lot' ~b,c = --2-5, H d3x [ - - q -  O( r  -2) 
Ot N-1 J Ox~ 

Using now the fact that 

--Ot= -i, Ot' _ OIIx-x'll + O ( r _ 2 )  

OX 4 ON a OXo~ r 

from (25) we have 

and 

f[ O'-~-Hab d3x'  + O(r  -2) 
~*b,. = --2~rr n" 0 Ot' N-1 

K 
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(25) 

(26) 

(27) 

N~a~b,4 - K i [ O H a b d 3 x , + O ( r _ 2 )  (28) 
21rr JOt N-1 

where n~ is the unit radial vector 

n~ := x~/r  (29) 

From the comparison between (27) and (28) we obtain the known 
asymptotic relationship between the spatial and time derivatives, 

~*b,~ = --in,~*b,4 (30) 

Furthermore, it has been verified that the potentials N y*b and their derivatives 

are proportional to r -1 asymptotically. This fact, together with equation 
(7), leads us to see that, asymptotically, 

YNab, cc-  O(r -2) (31) 

whatever the value of N. 

3.2. Asymptotic Expression for (~.b 
2 

In order to obtain the asymptotic expression for the truncated 
pseudotensor ~ab, we use the metric for the first approximation 

2 

~ab = 6.b + lab (32) 

This metric satisfies the coordinate conditions 

~*b,b = O(k 2) (33) 
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which are equivalent to 

[bb, a]1 = O(k') (34) 

where [bb, a]~ are the Christoffel symbols of the first kind for the metric 
(32). In this order of approximation, ~ b  is given by (Synge, 1969) 

2 

dab=Mab__ 1 . * (y. .L*b+Yb.L*)+O(k 3) (35) T r s L r a b s  + ~ T a b L r r  + 8 a b ' Y r s L r  s - -  
2 1 1 1 1 1 

where the asterisks stand for the conjugate tensor of a symmetric tensor. 
Since in general the conjugate A*ab for a tensor Aab is defined by 

A'~b  " 1 �9 = A a b  - -  ~ t~abAcc  (36) 

then, in the order of approximation considered, the conjugate of the first 
term in the right-hand side of (34) is given by 

M*b := -- [am, m]~[bm, m]l + O(k 3) (37) 

while the linear part Labcd of the Riemann tensor is given, in any order of 
approximation, by 

L a b c  d . t �9 - ~ (y.~.bc + Ybc.a~ - yo~.b~ - yb~.,~) ( 3 8 )  

Now, since between (3) and (38) there exists the relationship 

L b  c = Lpbc  p _ 1 t~bcLpqq p ( 3 9 )  

then, using (6) and (7), we can write nonlinear part (35) for the Einstein 
tensor in the form 

d ab M a  b , ! , : - - ( ~ r s - - 2 f ~ r s ' Y c c ) L r a b s  
2 * 1 1 * 

1 , _ � 8 9  1 , 

1 1 1 1 

I , 1 * 
- -  ~ t~rs')/cc) 

1 

1 , 1 * 
- ~ G ~ . . )  D (~, .*b-1 - ~ [ ( y ~  * ~rb 3" cc ) 

1 1 1 1 

+ ( y ,  1 , , 
- - 2  ~br~lcc)  [ ] (  ~ a r - - 2  ~ a r ~  ~cc) ] " 8 0 ( k  3) 

l l 1 1 
(40) 

The asterisks below M~b and L r a b s  m e a n  that in definitions (36) and (37), 
instead of the metric deviations Yak, their duals are used. Now, taking into 
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account (31), we obtain from (40) that, in the first approximation with 
respect to the parameter k, the truncated pseudotensor has the following 
asymptotic expression with respect to distance: 

Lrabs 1 * (oo)~ab -= M a  b _ ('Yrs --~ 6rs~cc) O ( k 3 r  -2) 
2 , 1 

(41) 

3.3. Asymptotic Expression for ~.b 
N 

We now generalize (41) to the case where the generic metric (12) is 
considered, M being an arbitrary natural number. Since for the evaluation 
of the variation of mass given in (22), the sphere surrounding the system 
is of arbitrary radius, we choose this radius so that formulas (24) and (25) 
may be used, maintaining all the terms in G ab greater than kn+~r -2 and u 

satisfying that the ones of order k2r -3 are negligible. These conditions, 
which are satisfied if r > k l-N, can always be assumed in Synge's method 
because, since it is of the fast approximation type, it leads to solutions for 
the Einstein equations valid all over the space. So, any term of order ker  -~  
with 3 - P -- N and Q -> 2, appearing in the asymptotic expression of - G  ab 

N--1 

will be negligible. 
From now on, we assume coordinate conditions of the form 

YN*b,b = O ( k  n+a) (pr [bb, a] = O(kU+~))  (42) 

assuring in this way the satisfaction of the following condition: 

1 , Lab = 5D ~N ~b + O(  k u+~) (43) 

which is analogous to (7). Then, using (43) in the expression for the truncated 
Einstein pseudotensor (see Appendix), 

(oo) ~abN = -- ~N ijLi~bj - ~N bcL *~ - ~N a~L *~ 

* ! * + ~ob~rsLr~ +2 ~abL.+ Mo~ + O(k'-~lr -2) (14) 

and following a reasoning similar to the one that led to (41), we obtain 

= __yvrsLrabs~ ~_~Ncctrabsl * -t- o ( k N + a r  -2 ) (45) 

so that it is clear that, in order to obtain the value of (45) as a function of 
the metric deviations, we need to calculate the corresponding expressions 
for Mab and Labcd. 
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Since Mab is defined by 

M a b  : =  Mmabm 1 -- ~ ~abMmrrm 

with 
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(46) 

Mabcd := [ ad, m][bc, m] - [ac, m][ba, m] (47) 

then, taking into account (42), we have 

Mob = [rob, l][am, l]+�89 l][rm, 1] + O(k s§ (48) 

so that, substituting the metric in (12) with M - -  N in (48), we have 

M,~b = -- 1[ ~,,,,.bNY,,,,., ~ + 2NY b,,,,,Ny,~t.,, ' _ 2NY,,,b.t~at.,,,] 

+ 1 a~,b [3 1,.,,,.,.t m,.r- 2Ny,,...,,t~.,.m ] + o(kN+'r  -2) (49) 

and from here we have 

1 , 
M a b  =- -4~Nml ,  b ~ * -1-1- ~ * * ~N dd'b 1 , 

! ~ *  ~ *  .2_3 * * 

3_ , , 1 * , 
~-8 ~N ml, r ~N ml'raab - -4  ~N mr, l ~N rl'maab 

+ 4 t ~'~ TN c~"t~'~b + O( k N+I r -2) (50) 

The expression for L,~b, is obtained from the linear part of  the Riemann 
, 

tensor defined in (38) by substituting the y's by the y*'s. The result is 

1 , 
L,ab~ = ~ ( Y N . . . .  b +  * * -- ~N . . . .  b)  r ,os * 

1 , , -a(ar .g  N .... b+aab~c*,,~--a.b~ ..... --6..TN*~,,b)+o(kN§ -2) (51) 
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Then, from (31), (44), (49) and (50) we finally have, as asymptotic form 
for the truncated Einstein pseudotensor of order N, the following value: 

1 , 

_ l  ~Nmb, a ~Ndd, m 3 * , +~ ~ .... ~ ~,m~o~ 

3 , , ! * * 
+8 ~ ,.,,.r ~ ,,..r'L,. -- 4 ~ r.~., ~ ~,,., ~~ 

1 , + ~ , r ~ *  ~ _ l ~ *  , ,  _ ! . ,  �9 
~N ab, rs cc, l ~  2 NY rs 

1 * 1 
+ ~ N r s  ~ * -L_! ~ * * * * "Y as, rb -~ ~ ~Nrr ~N . . . .  b ~ , . s - ~ ,  

1 , 

- ~ *  * + ~Ncc, rb o ( k N + ~ r  - 2 )  (52) 

It is to be noted that, unlike in the linearized theory of Landau and Lifshitz 
(1951), both the first and second derivatives of the metric deviations appear 
in (52). 

4. MASS LOSS DUE TO THE GRAVITATIONAL RADIATION 

In this section we use (52) to study mass loss due to the radiation of 
gravitational waves. To this end, the mean time value for the mass variation 
of a material system having an approximately periodic motion of period r 
is evaluated. In general ~" is given by 

If equation (22) is taken into account, the integrand in (53) can be written 
in the form 

' m _ .  _ ,  f(c~) dot4 
d t  - tK N d E ~  (54) 
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so that from (53) we have 

( K 1 I (f(~176 ) K-I f (f(~)d~4 ) -&t , = d s  ~ d t  des dx 4 (55) 

Then, taking into account (52), we have 

(drn) K-1 I Z  d~a I I---1 '* ~* ~-1-~* * 
"r ~N dd, 4 = 1 4 YNml,4NYml, a--8NY . . . .  

1 * ~Ncd, m + l  * * * --:~N 4I'm * ~N . . . .  1 ~N o~ 4, m * ~N Od,4 ~N CC, l 

1 * 1 
~ - ~ N m 4 ,  l * * * ~Ndd, m -1-~  * ~ * ~NCtl, m N~m4,a 2 Yrs ]~ I . . . .  4 

1 
]~ a4,rs -- 2 N y rs NY ra,~s -- 2 ]~ rs ~1 . . . .  4 

Nl rrl~ . . . .  4 41~ 4s N/ . . . . .  - -4  ~Nrc~ ~Ncc, r4] dx4  

+ O(kN+Xr -2) (56) 

Now, since equation (30) can be written in the form 

Ta*b, = * Nr')lab,4 (57) 
where N~ is the null 4-vector given by 

N r : = ( - i n ~ ,  1) (58) 

and applying the method of integration by parts together with (31), we have 

f o~N*q ,m ~N*~s,,.dx4=a(FN~sNm~N*pq, m ) + O ( k N + l r  -2)  (59) 

In the same way, but now using the coordinate conditions (42), we have 

fo A(FNrsNqTN*Pq'm)+O(kN+lr-2) (60) ~N.q,m* T N *rs,q dx4  = 

and 

fo- ~*b A(F~deNo ~b) + O( k N+'r -2) (61) TN *~d"~e d x  4 = 

where ~Nr s and F~de are given by 

rr := I dx4, ~N ede "= f ]/cd, e4 dX4 (62) 
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respectively. Then, using (59)-(61), (56) can be written in the form 

(~tlr'=K-1 f d~a{ f  dx4[--l~N~l,4~N~l,4"q-l~Ncgc, ot ~Ndgd,4 

1 :~ 1 * a } +g~NrS~ TNrs,4--2, TNrr,4 F .... 4]'+-R(x , r )  ( 6 3 )  

where R(x ~, r) is given by 

R(x~, .r) := 1 * 1 * A[__ITN4t, mNmFN~lq_~TN,~4,mNm 1 * Fcc - Z ~ ~l,4NiFc~ 

1 * 1 * - ~ YNrsNsF,~4r ..[_~TN,~l, mNl~Nm4_~TNm4,aNmFNdd 1 * 

! * 
_b2 ~NrsNsFNNr4a_]_l ~N@rsNr 1 .  F.s4-z  ~,~N,F .... 

1 * 1 * - ~ r ~ F r ~  +Z~r ,F~]  (64) __zymNrFN~c4 1 * 

If F,, and F~a~ in (62) differ from Ny*~ and Ny*a~, respectively, in quantities 
N N 

of the order O(kN+~r-2), and if R(x c~, z) is of this same order, then from 
(63) we have 

- - l  ~Nrs ~ N . . . .  4"~-4 ~Nrr ~ N . . . .  41 dx4+O(kN+lr-2) ( 6 5 )  

or, using again the integration by parts to the last two terms in the integral 
with respect to time, 

(~t ) =K-' I dX~ f dx4[--~YN*',4YN**,=+~YNC*,-YN*a,4 

! . *  . *  ! �9 �9 
2 N y rs,4 N l . . . .  --4~Nrr, 4 ~ . . . .  ] + O(kN+~r -2) ( 6 6 )  

that is, 

dm; 1 

1 * * * ~N44,4"~-~N44,Ot~N44,,)]'~-o(kN+lr--2 ) ( 6 7 )  --  $ (NT/3/3,~ NT ee,4 q- 2NT ~p , .  * * * 
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or, by means of (42) and (30), 

d t / .  4 ~ f  dE~I  dx4[m~'4~o~'4 

- 2m~uT~,4~yz~,4+ " * �9 m~nt3n~npn,~ 7 N t3p,4 TN ~,4 

i 
Inc~nen~ ~N ~B,4 ~N e~,4 - -  ~ n a  N~fl/3,4 N~ ee,4 %" " * * 

i -~ n~n~n~n.n~ ~.,. ~*~,4+ O(kN+I~ -~) (68) 

Now, writing the surface element in the form d e s  = n~ dE and taking into 
account that 

4~r n~dCt=O, --4~r n~n~dl~=16~ 

4~r n~n~n~ d ~ = O  (69) 

where d l l  is the corresponding element of solid angle, from (68) we have 

dm ~ 
<<-~>,>n=g~f dtr2(3~,~yu~,4-y~t3,4yN*~,4)+O(kN+~r -2) (70) 

The metric deviations appearing in (70) can be evaluated as in Landau 
and Lifshitz (1951) or Misner et al. (1973). In effect, differentiating (18) 
with respect to x4, we have 

44 
NH-~I '44 = HaON-I' at3_ "f- O(  kN+l ) (71) 

so that 

NH_4•I af t  ao- c~,r o'T N + I  ( x~xt~),44=(H x o x ~ ) ~ . - 2 ( H  x.+H x ~ ) ~ + 2 H  +O(k ) (72) 
-- N- -1  " N- -1  N- -1  ' N- -1  

Now, using the divergence theorem and that H ab is null at infinity, from 
N--1  

(72) we have 

f 1 d2I=, 
H~~ ldax' 2 dx 2 ~ O(kN+I) (73) 
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f 
/~, := [ H44X~X.~ d3x' (74) 

3 N--1 

are the quadrupole moments of order N for the material distribution. Then, 
by (24), we have 

~ ,  _ 2 d2_//;~+ O(kN+lr_2) (75) 
r dx4 

Substituting now (75) into (70), we have 

dm 1 ((--~),)a=gf dt[[daL'~2-1fd3I'~2] \ dx34 ] 3 \ dx34 ] + O(kN+lr-2) (76) 

and, if the free trace part for the quadrupole momentum 

~L~r~-:= f HN2(Xo-X • --lt~o-rXeXe) d3x' (77) 

together with the identity 

(d 3"t.o-.~2=(d3Io-.~ 2 l [d3 l~e~  2 

-----~x34, ] \---~-x34, ] -~\--~x43 ] (78) 

are used, from (76) we finally have 

dm 1 ( d 2 "iLo-,r'~ 2 
( (--~ ), )n = -~ f dt \---~x34 ] + O(kN+lr -2) (79) 

that is, 

dm 

the dots meaning, as usual, derivatives with respect to time. 

(80) 

5. CONCLUSION 

We have obtained one expression for the mass loss due to the radiation 
of  gravitational waves by deriving the energy flux through a sphere of radius 
greater than k 1-N. To this end, we have used Synge's method to determine 
both the asymptotic value for the metric and the truncated Einstein 
pseudotensor to the order N. 

The value of energy loss due to the radiation of gravitational waves 
derived in (80) is formally identical to the quadrupole formula derived in 
the linear approximation. This formula corresponds in Synge's method to 
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the first approximation. Nevertheless, the value in (80) for the moments 
has been calculated taking into account all the terms of order less than 
k N+~ r -2. As can be seen in (74), these terms appear in the energy-momentum 
complex (13) when the orders of approximation M in (12) (with M->2) 
are taken into account. 

APPENDIX 

In a differentiable manifold with metric gob, the Riemann tensor is 
given by 

. _  I Rab~ . -  ~ ( g ~ b ,  cd + g b c ,  a d  - -  g a c ,  b d  - -  g b d ,  a c )  

+ gmn([ad, rn][bc, n ] - [ ac ,  m][bd, n]) (A1) 

or, equivalently, by 

R~bcd := U~bcd + gm'D~b~d~, (A2) 

where U represents the linear part in (A1), and D contains the terms 
composed by product of two or more components of the metric tensor. 
Using these symbols, we can write the Einstein tensor in the form 

G o d ' =  ab  dc  i j T r  1 ab  dc  rs ~ 
g g gg Uibcj--~g g gbcg gklUkrsl 

a b  dc  ij m n  r.,, 1 a b  dc  rs kl  m n  r , ,  
+ g g g g ld  ibcjmn -- ~ g g gbcg g g ~' k,~tm~ (A3) 

Substituting in (A3) the covariant and contravariant components of the 
metric tensor by 

g a b  = 8 ab  + TN a b  (A4) 

and 
M 

gob = ~ob _ ~o~ +g(K ... 2 ) +  O(kN+l) (AS) 

M 

respectively [where g ( ~ . . .  s is a sum whose terms are formed by 

products of two or more ~,  1 -< Ni -< N -  1] and separating in (A3) the two 
terms 

~ a b R d c q i j l ? "  l ~ a b ~ d c  R ~ r s R k l l r  
t l  tJ L2 ibcj - -  2 " u tlbctJ " "-' kr~l (A6) 

which give the linear part (3) of the Einstein tensor, we obtain as asymptotic 
expression for the truncated Einstein pseudotensor 

+ ~ e U k , r k  + Di~di,,, --�89 + o ( k N + l r  -2) (A7) 
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N o w ,  i f  the  fo l l owing  r e l a t i o n s h i p s  b e t w e e n  the  sym bo l s  U a n d  D, a n d  the  
symbo l s  L a n d  M de f ined  in  (38) a n d  (47), are  t a k e n  in to  a c c o u n t ,  

Lab~d =- U~b~d (A8) 

M,,b~d =- D~b~d,~. (A9) 

L*~ := Lpb~. =-- Upb~p (AIO) 

M~c := M,b~p ~ Dvb~v~r. ( A l l )  

we o b t a i n  f rom (A7) 

(~)~N ~b = - ~oLiabi - YNb~L.* - YNb~L~* - YNa~L*~ + t~ ab ~N rsL *rs 

1 , +5 TN abLrr + Mab + O( kN+lr -2) (A12) 

This  e x p r e s s i o n  is a lways  va l id  i f  the  c o n d i t i o n s  e s t ab l i shed  in  Sec t ion  3.3 
are satisfied.  
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